# Vibration Energy Harvesting Basics

Paul D. Mitcheson

NIPS workshop 2014

# **Overview**

- Motivation
- EH Overview
- Transducers Overview
- Fundamental Analysis and Optimisation
- System Modelling and Simulation Approaches
- Transducer and Power interface Requirements
- Bringing it together piezoelectric Example
- Conclusions

These systems fundamentally have strong coupling between electrical and mechanical parts – hence even a basic overview must consider the electronic load

# **Imperial** - history

**1851–1890** Constituent Colleges formed, Prince Albert and the Great Exhibition

1907 Imperial College founded by merger of:

- City and Guilds College
- Royal College of Science
- Royal School of Mines

#### 1988-2000 Mergers with:

- St Mary's Hospital Medical School
- National Heart & Lung Institute
- Charing Cross/Westminster and Royal Postgraduate Medical Schools
- Kennedy Institute

**2007** Left the University of London to become an independent university





### **Past achievements**

### 14 Nobel Prize Winners associated with Imperial College



Alexander Fleming: Penicillin



Denis Gabor: Holography



Rodney Porter: Stucture of Antibodies



Andrew Huxley: Nerve Impulses



Abdus Salam: Theoretical Physics

### **Imperial College London**



# Imperial College London



Electrical and Electronic Engineering Dept 11 story building – spot the cleanrooms...

# **But I'm not from London Originally**

- When you ask an Italian born in Rome what nationality he is, he will say he is Roman, not Italian.
- People from Yorkshire are similar...
- They are also suborn and talk with funny accents (I have been away for too long..)





### **What is Yorkshire Famous for?**

















# **EH Overview**

# **Energy Harvesting – Original Motivations**

- Energy harvesting replacement of finite power sources in portable devices by converting ambient energy into electricity through the use of an energy harvester
- The field started to emerge in about 2000
- Needs knowledge on devices, physics and electronics
- A very small number of people had looked at some type of harvesting from high frequency vibration
- My original motivation was to look at human body powering of implantable sensors



# **Orders of Magnitude of Power**

| World electrical generation capacity | 4 terawatts  |
|--------------------------------------|--------------|
| Power station                        | 1 gigawatt   |
| House                                | 10 kilowatts |
| Person, lightbulb                    | 100 watts    |
| Laptop, heart                        | 10 watts     |
| Cellphone power usage                | 1 watt       |
| Wristwatch, sensor node              | 1 microwatt  |
| Received cellphone signal            | 1 nanowatt   |

Sensor nodes are receiving a lot of interest – but the constraints on volume and power are significant and we must push design to the limit

### **Sources for Harvesting**

| Energy Source                                           | Conversion Mechanism                            |
|---------------------------------------------------------|-------------------------------------------------|
| Light<br>Ambient light, such as sunlight                | Solar Cells                                     |
| <b>Thermal</b><br>Temperature gradients                 | Thermoelectric or Heat Engine                   |
| Magnetic and Electro-magnetic<br>Electro-magnetic waves | Magnetic induction (induction loop)<br>Antennas |
| Kinetic                                                 | Magnetic (induction)                            |
| Volume flow (liquids or gases)                          | Piezoelectric                                   |
| Movement and vibration                                  | Electrostatic                                   |

# **Why choose Kinetic/Vibration Devices?**

Original reasons:

- Thermal gradients are small at small sizes on body
- In most places (unless close to a base station) RF energy is quite limited
- Solar is no good for implanting into the body
- So movement seemed a logical choice
- Open research with lots of interesting questions



Seiko stopped production of the thermic watch but continue the kinetic device

### **Motion Energy Harvesting**

• Direct force devices (like most electrical generators)





• Inertial devices (most energy harvesters are of this form)

This is a very important distinction...

# **Direct Force Device**



- A force applied to a transducer
- Energy generated is forcedistance integral
- Transducer could be piezoelectric, electrostatic or electromagnetic
- System dynamics probably dominated by driving force, *fdr(t)*
- If driving force is large enough, then make the damping as big as possible

### **Direct Force Generators**





Heel strike generator: Paradiso et al, MIT

East Japan Railway Co.

• Energy harvesting ticket gates

# **Inertial Generators**



We are going to spend a lot of time with this "mass in a box" model... Simple principle:

- Shake the box
- Mass moves relative to the frame
- Transducer damps the motion and outputs electrical power
- Aim is to maximise power dissipation (conversion) in the damper (again, force distance integral)
- Damper can be electromagnetic, electrostatic or piezoelectric
- Can't just make damping force arbitrarily large as this limits mass travel

## **Inertial Generator - Large Examples**

Larry Rome, Penn State





Harvesting torch

# **Inertial Devices – smaller examples**

• Capture energy from the environment and convert to an electrical form



Seiko kinetic watch generator



- •PMG17 from Perpetuum Ltd
- •Resonant generator tuned to 100 or 120 Hz
- •55 mm diameter x 55 mm length
- •4.5 mW output power (rectified DC) at 0.1g acceleration

# **Electromagnetic Transducers - example**

• Vibes Generator (Steve Beeby and others)



- 2800 turns on coil
- 50 Hz and 60 mg operation
- Output voltage around 700 mV RMS
- Output power 55 µW

Self-powered sensor and transmitter demonstrated

# **Piezoelectric Transducers - example**

• UC Berkeley Generator (Shad Roundy and others)



- 120 Hz and 60 mg operation
- Input amplitude 4.4 µm
- Output power 116 µW

Self-powered sensor and transmitter demonstrated from similar device

# **Electrostatic Transducers - example**

• MIT Generator (Mur Miranda and others)



- Referred to as comb drive in MEMS community
- Constant V sliding approach
- Simulations show an expected 8 µW from a 2.5 kHz input

## **Summary of Overview**

- Large scale power generation uses direct-force type generation
- This is not suitable for harvesters because applications usually limit the generator to one attachment point
- This (as well as practical constraints) places fundamental limits on the power density of these systems
- Kinetic harvesters have been seen in some practical scenarios and are a still growing research topic

# Transducers Overview

<u>Performance limits of the three MEMS inertial energy generator</u> <u>transduction types</u>

PD Mitcheson, EK Reilly, T Toh, PK Wright, EM Yeatman Journal of Micromechanics and Microengineering 17 (9), S211

# **Transducers**

- There are essentially two phenomena that can be used to convert (relative) motion into electrical energy (or vice versa)
- Electromagnetic/electrodynamic force
- Normally used in macro scale devices (eg motors, power stations...)
- Electrostatic force
- Often found in MEMS
- The electromagnetic force can be implemented
  - with a coil and magnet
- The electrostatic force can be implemented in several ways
  - Moving plate capacitor
    - (dis)charged by an external circuit
    - Primed using an electret
  - A piezoelectric material

# Which is Best and Why?

- Surprisingly hard question to answer!
- Back to the mass in a box
- What value of damper should we choose to maximise power generation?
- What does this depend on?
- What should the damper characteristic be? Linear, non-linear?
- What are the practical limits?
- How difficult/efficient is each damper when connected to a circuit?



# **Electromagnetic Transducers – basic theory**



- Change of flux induces a voltage on the coil
- Current flows
  - Lorentz force acts as linear damper

ż(t)

$$F(t) = \frac{(NBl)^2 \dot{z}(t)}{R}$$

- BIL product from generated emf
- *N* is number of coil turns and *l* is active coil length

If we ignore coil inductance force is proportional to velocity

# **Electrostatic Transducers - options**

- Easy to achieve a Coulomb force, and two methods available:
  - Changing separation of plates in constant charge and constant overlap
  - Changing overlap of plates at constant voltage and constant separation



# **Electrostatic Transducers - equations**

• Changing separation at constant Q:

$$F = \frac{1}{2} \frac{Q^2}{\varepsilon A}$$

A is plate area

• Changing overlap at constant V:

$$F = \frac{1}{2} \frac{V^2 \varepsilon w}{d}$$

*w* is plate width and *d* the separation

• In both cases F is constant (Coulomb)

# **Constant Q Operation**

- Capacitor must be precharged at C<sub>max</sub> to optimal voltage (to give optimal damping)
- Plates separate to give C<sub>min</sub> under constant Q
- Voltage on plates rises
- Energy generated is:

$$E = \frac{1}{2}Q^2 \left(\frac{1}{C_{\min}} - \frac{1}{C_{\max}}\right)$$

# **Piezoelectric Transducers - Principle**



- When the piezoelectric is strained, a current is generated
- Some of the charge ends up on the internal capacitance
- Some can flow in an external load

# **Piezoelectric Transducers - equations**



F(t) is the force on the transducer,  $C_0$  the internal piezo capacitance, V(t) the terminal voltage, z(t) the displacement and  $\alpha$  and  $K_{PE}$  are material constants

# **Piezoelectric Transducers - behaviour**

• For a resistive load the transducer force is:

$$F(s) = Z(s) \left( K_{PE} + \frac{s\alpha^2 R}{1 + sC_0 R} \right)$$

 This can be written as a constant valued spring constant (*K<sub>PE</sub>*) plus a frequency dependent high pass term:

$$F_{\rm HP}(j\omega) = Z(j\omega) \left(\frac{j\omega\alpha^2 R}{1 + (\omega C_0 R)^2} + \frac{\omega^2 \alpha^2 C_0 R^2}{1 + (\omega C_0 R)^2}\right)$$

damper

spring

# **Piezoelectric Transducer - explained**

- We can therefore think of the piezoelectric transducer with a resistive load as presenting a spring constant and a damping term
- Both of these are frequency sensitive
- Nonetheless, at a given frequency, the damping can be calculated and the system behaves linearly (i.e. generates no harmonics)
- Damping is maximised (*dF/dR*=0) when:

$$R = \frac{1}{\omega C_0}$$

### **Practical Aspects**

- There are limits on the maximum forces that can be developed for these transducers
  - There are maximum voltage limits on the piezoelectric and electrostatic devices due to either breakdown of the dielectric medium, or the attached circuit components
  - There are limits on the current that can flow in the electromagnetic transducer due to coil resistance
  - There are limits on damping in the piezoelectic device due to the output capacitance (i.e. not all the displaced charge can be forced through a chosen load)
- The circuit requirements have a significant effect on system
  performance

## **Summary of Transducers**

- 2 phenonena
  - Electromagneitc or electrodynamic
  - Electrostatic
- 3 common implementations
  - Magnetc and coil
  - Moving plate capacitor
  - Piezoelectric
- Each has a different velocity-force characteristic (which also depends on the connected circuit element
- Practical constraints on each type limit the magnitude of the damping

# Fundamental Analysis and Optimisation

<u>Architectures for vibration-driven micropower generators</u> PD Mitcheson, TC Green, EM Yeatman, AS Holmes Microelectromechanical Systems, Journal of 13 (3), 429-440
#### **Optimise the mass in a box model...**



How do we maximise the power dissipated in the damper?

### Simple Example as a Warm-Up!



- Host structure rotates
- Gravitational torque on offset mass holds stator in place
- Power generated is produced of force and angular velocity

#### **Rotational Micro-Generators – Formula**



And to optimise...

# **Rotational Generator Optimised Power**

• So the limit on power generation in the rotational case is:

$$P_{\max} = \omega mgL$$

• Requires motor torque to be held at:

$$T_{opt} = mgL$$

- Overestimates power at low speeds with electromagnetic implementation
- This is because winding resistance ignored in basic model

#### **Design Choices**

- We have seen there are 3 ways of implementing the damper. What are their characteristics?
  - Electromagnetic the force will likely be proportional to velocity.
  - Piezoelectric force could be proportional to velocity
  - Electrostatic Coulomb force (like sliding friction)
- And we have other design choices to make for our mass in a box
  - Resonant or non-resonant?
  - Aspect ratio, materials, etc

#### **Inertial Generator Architectures**

| Architecture | Damper        | Spring            | Damping Force                   |
|--------------|---------------|-------------------|---------------------------------|
| Resonant     | El. Mag/Piezo | $k = m\omega_n^2$ | $f(t) = \dot{z} \times D$       |
| Resonant     | Electrostatic | $k = m\omega_n^2$ | $f(t) = -sgn(\dot{z}) \times F$ |
| Non-resonant | El. Mag/Piezo | k = 0             | $f(t) = \dot{z} \times D$       |
| Non-resonant | Electrostatic | k = 0             | $f(t) = -sgn(\dot{z}) \times F$ |

- Back of envelope calculation shows that the nonresonant velocity-damped generator is not practical on a small scale
- It would require more damping force than can be achieved with practical magnet/coil arrangements

### **Inertial Generator Architectures**

- Three practical architectures
  - Velocity-Damped Resonant Generator (VDRG): Generator with a tuned mass-spring system and a linear damper
  - Coulomb-Damped Resonant Generator (CDRG): Generator with a tuned system and a non-linear damper
  - Coulomb-Force Parametric Generator (CFPG): System without a spring and with a non-linear damper

#### Which is the best? When? Let's analyse them...

# **Velocity-Damped Resonant Generator**



• Newton's 2*nd* Law:

$$m\ddot{z}(t) = -kz(t) - D\dot{z}(t) - m\ddot{y}(t)$$

• Transfer function:

$$\frac{Z(s)}{Y(s)} = \frac{-s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• Where:

$$\xi = \frac{D}{2m\omega_n}, \, \omega_n = \sqrt{\frac{k}{m}}$$

## **Velocity-Damped Resonant Generator**

• The frequency response:

$$\frac{Z_0}{Y_0} = \frac{\omega_c^2}{\sqrt{(1 - \omega_c^2)^2 + (2\zeta\omega_c)^2}}$$

• Energy per cycle:

$$\mathbf{E} = 2\mathbf{D} \int_{-Z_0}^{Z_0} \dot{z} dz$$

• And thus:

$$\mathbf{P} = \frac{\zeta \omega_c^{3} Y_0^{2} \omega^{3} m}{[1 - \omega_c^{2}]^{2} + [2\zeta \omega_c]^{2}}$$

## **VDRG – Maximising Power Density**

• Find the optimal damping factor:

$$\frac{dP}{d\zeta} = 0$$

• This gives:

$$\zeta_{opt} = \frac{1}{2\omega_c} \sqrt{\omega_c^4 - 2\omega_c^2 + 1}$$

- But need to consider the constraints:
  - The limitation on  $Z_1$
  - The maximum value of physical constants

We want to find the best value of  $\zeta$  under all conditions

# VDRG – Maximising Power Density

- The expression for maximum power density (under all conditions) can always be written as a function of:
  - The ratio of  $\omega/\omega_n$
  - The ratio of  $Z_I/Y_0$
- And can be normalised to:
  - The value of the proof mass
  - The cube of the input motion frequency
  - The square of the input motion amplitude

We can now plot an optimal performance surface...

#### **VDRG Optimal Performance**



Operating chart

Maximum power

#### **VDRG Operating Regions**

- With reference to the operating chart on the previous page
  - 1. Device unable to operate, the required  $\zeta$  to meet the displacement constraint being greater than the system can achieve.
  - 2. Power limited by  $Z_l$  device operating at displacement limit
  - 3. Device operating optimally for the given value of  $\omega_c$ .
  - 4. More power could be generated if the damping factor could be increased above the value of  $\zeta_{max}$ .

## **Coulomb-Damped Resonant Generator**

• Newton's 2*nd* Law:

 $m\ddot{z}(t) = -kz(t) - \mathbf{F} \times \operatorname{sgn}(\dot{z}(t)) - m\ddot{y}(t)$ 

• Describing function:

$$\frac{Z_0}{Y_0} = \omega_c^2 \left[ \frac{1}{\left(1 - \omega_c^2\right)^2} - \left(\frac{F}{mY_0\omega^2\omega_c}U\right)^2 \right]^{\frac{1}{2}}$$

Where:  

$$U = \frac{\sin\left(\frac{\pi}{\omega_c}\right)}{\left[1 + \cos\left(\frac{\pi}{\omega_c}\right)\right]}$$



#### **Coulomb-Damped Resonant Generator**

• The energy dissipated is given by the force-distance product, and thus the power is:

$$P = \frac{4Y_0 F \omega \omega_c^2}{2\pi} \left[ \frac{1}{(1 - \omega_c^2)^2} - \left(\frac{F}{mY_0 \omega^2 \omega_c}U\right)^2 \right]^{\frac{1}{2}}$$

• We may now find the optimal damping force, and the operating regions as we did for the VDRG...

#### **CDRG Optimal Performance**

m=1 g,  $Y_0$ =1 mm,  $\omega$ =20 $\pi$ , A=1 cm<sup>2</sup>,  $V_{max}$ =450 V



#### **CDRG Operating Regions**

- With reference to the operating chart on the previous page
  - 1. Device can't operate without stops in motion (non-linear damper can cause stop-start motion)
  - 2. Power limited by  $Z_l$  device operating at displacement limit
  - 3. Device operating optimally for the value of  $\omega/\omega_n$
  - 4. Device operation limited by maximum voltage

# **Coulomb-Force Parametric Generator**



Maximum inertial force on mass:

$$mY_0\omega^2$$

• Thus energy per stroke is the force distance product:

 $E = \beta m Y_0 \omega^2 Z_0$ 

 β is the break-away factor and is less than 1 (in order for the mass to move some distance the force must be a fraction of the maximum inertial force)

## **Coulomb-Force Parametric Generator**

• Thus, the power is given by:

$$P = 2\beta \left(\frac{Z_0}{Y_0}\right) \frac{Y_0^2 \omega^3 m}{\pi}$$

- There is an optimal  $\boldsymbol{\beta}$
- Must maximise  $\beta Z_0$  product
- Maximum value of  $Z_0$  is  $Z_1$
- Can't solve for  $\beta_{opt}$  analytically...

## **Coulomb-Force Parametric Generator**



- β<sub>opt</sub> calculated numerically from simulation
- Polynomial fitted to the results (shown)
- Change from double to single sided operation

• Now we know  $\beta$  we can plot the optimal performance...

#### **CFPG Optimal Performance**

m=1 g,  $Y_0$ =0,5 mm,  $\omega$ =2 $\pi$ , A=1 cm<sup>2</sup>,  $V_{max}$ =110 V



#### **CFPG Operating Regions**

- With reference to the operating chart on the previous page
  - 1. Optimal double-sided operation
  - 2.  $\beta$  reduced to allow double sided operation
  - 3. Device in voltage limit more power could be generated if the device was allowed to operate at over 110 V
  - 4. Single sided mode and device still in voltage limit

#### We can now compare the three architectures...

#### **Architecture Comparison**



Maximum performance under varying operating conditions

#### **Architecture Comparison**

- Resonance only useful when  $Z_I/Y_0$  is large
- Very little difference between the VDRG and CDRG choice mainly down to implementation and scaling
- CFPG better when  $Z_I/Y_0$  small implanted devices powered from human body motion
- The CFPG doesn't have a resonant system to be tuned

But how do the generators perform on signals more complex than single sinusoids?

#### **Human Powered Generators**

#### Power from non-sinusoidal motion [8]



# **Effectiveness of Microgenerators**

- The efficiency is actually an effectiveness
- Many people have suggested different formulae
- Fights can break out whilst discussing this!
- I would argue there is only sensible metric...
- A figure of 100% on this scale is the absolute best you can do
- We call this metric Volume Figure of Merit

#### **Effectiveness of Inertial Microgenerators**



- Volume Figure of Merit
- Lots of room to improve!
- Not enough data yet on rotational case

#### **Summary of Harvester Fundamental Analysis**

- We analysed the limits of power conversion using an inertial generator mass in a box model
- Power is maximised at resonance
- Power is proportional to the proof mass
- Power is proportional to the internal displacement
- Different damper types perform slightly differently but when optimised the limits are the same
- Resonance is useful when the device is larger than around 10 times the driving displacement amplitude
- For these systems power can always be normalised to  $Y_0^2 \omega^3 m$

# **System Modelling and Simulation Approaches**

#### **Modelling Overview**

- All our analysis so far has involved closed form algebra
- The damper characteristic is critical to the analysis
- Takes into account the coupling between mechanical and electrical
- "Simple" to analyse when the load is linear or switched on an electrostatic (because the damping characteristic is known)
- What type of model could we use for a complete electromechanical system analysis and simulation?
- The right model can give very good insights...

## **One Potential Modelling Strategy...**

• Normal type of simulation diagram used in Simulink



- This is a mixed electromechanical system model of a CDRG
- Probably also should include fluids effects, careful fields analysis too
- Allows time domain simulation... but does it give any real insight?

#### **Electrical/Mechanical Analogy**

- Rather useful is the analogy between Newtons's second law and Kirchoff's voltage law.
- The equations which describe a massspring-damper system are identical in form to those describing an RLC oscillator
- The mapping can be done using one of two conventions,
  - f->V, (flow, or velocity, corresponds to voltage
  - e->V (effort, or force, corresponds to voltage)



#### **Electromagnetic Harvester Model (f->V)**

- Immediately you can see what happens when you operate at, or away, from resonance.
- You can also see what you need to do to maximise power with parasitic damping present



#### **Piezoelectric Harvester Model (e->V)**

More sophisticated to model the interaction between the load and the generator



• This can be modelled in SPICE and can allow the load circuit to be modelled with good device models

#### **More Sophisticated Models**

- Include the non-linear mechanical components (mass limited travel, spring hardening)
- Include custom semiconductor device models
- All done in SPICE Imperial College Energy Harvesting Toolkit (ICES)



model

Green TC, Mixed Electromechanical Simulation of Electrostatic Microgenerator Using Custom-Semiconductor Device Models, PowerMEMS 2009, Pages: 356-359

#### **ICES Toolkit**



http://www3.imperial.ac.uk/controlandpower/research/
portfoliopartnership/projects/powermems/simulationtoolkit/
# **Transducers and Power interface Requirements**

# **Transducer Considerations**

- With the right electronics, any type of transducer can give any force characteristic
- Easier to make linear damper with electromagnetic and piezoelectric
- Easier to make Coulomb damper with electrostatics
- Scaling laws are important:
  - electrostatic forces dominate at small size
  - electromagnetic are better at larger sizes

Choice of transducer depends on scale and difficulty of implementation

# **Transducer/System Electronics**

- Need electronics to present optimal load to transducer
  impedance match
- This ensures maximum power generation
- Actual load electronics probably not optimal
- Transducer voltage is AC load wants regulated DC
- Energy storage needed as harvester is intermittent



# **Electromagnetic Transducer - requirements**

- Voltage from generator is typically small must be stepped up
- Must draw a specific peak current from generator to keep the optimal damping force
- Resistive is more optimal than an imaginary or nonlinear load
- Need power converter with controlled resistive input impedance
- This will create a linear damping

### **Proposed El.-mag. Circuit**



- Boost topology for step-up
- Draws an in-phase sinusoidal current from a sinusoidal voltage source
- Two converters eliminate need for diode rectifier
- Alter damping by altering duty cycle

# **Summary of Electromagnetic Transducer**

- Transducer produces low voltage
- Difficult to rectify with diodes
- Control coil current to control damping force
- Makes a linear transducer (assuming coil inductance ignored)
- Scaling laws suggest it's ok for macro-scale, but not micro-scale

# **Electrostatic Transducers - requirements**

- Capacitor must be precharged to correct voltage
- Voltages from generator tend to be very high. Step down circuitry required.
- The capacitor must be electrically isolated for const Q part of the cycle  $10^{12}\Omega$  blocking impedances required.
- Trade-off: Large area semiconductors keep conduction loss low but have high parasitic capacitance and leakage.

### **Electrostatic Transducers – proposed circuit**



- Buck topology
- Allows controlled charge and discharge of variable C

# **Summary of Electrostatic Transducer**

- Transducer produces very high voltage
- Difficult to block with integrated pn junctions
- Control capacitor priming voltage to control damping force
- Makes a non-linear transducer (Coulomb-force)
- Scaling laws suggest it's ok for micro-scale, but not macro-scale

### **Piezoelectric Transducer**

- Typically cantilever structures to give mechanical gain
- Makes it easier to get a large strain on the piezo
- Using a resistive load (resistive input converter) often cannot achieve enough damping
- Especially at high frequency due to shunt  $C_0$
- Voltages and currents are reasonable

Let's look at a specific example to tie all we have done together

# Piezoelectric Harvester System Example

<u>Power-extraction circuits for piezoelectric energy harvesters</u> <u>in miniature and low-power applications</u> J Dicken, PD Mitcheson, I Stoianov, EM Yeatman Power Electronics, IEEE Transactions on 27 (11), 4514-4529

### **Piezoelectric Harvesters**

Piezoelectric harvesters produce AC outputs

- Must have rectification
- May require step up or down depending on open circuit voltage of piezo



- But can we extract maximum power?
- As we know, piezo material coupling can be low. This means it is often hard to achieve the optimal electrical damping

### Modify the voltage waveforms on the piezo



- Charge on capacitor is resonantly flipped at voltage peaks
- Even in open circuit, a finite maximum amplitude is reached due to finite circuit Q-factor

### It's a Coulomb Damper now!

Remember the force on the piezoelectric material is:

$$F(t) = K_{PE} z(t) + \alpha V(t)$$

Where  $K_{PE}$  is the beam short circuit stiffness. This can be written as:

$$F(t) = K_{OC} z(t) + \alpha Q(t) / Cp$$

Where  $K_{OC}$  is the open circuit stiffness and Q(t) is the external charge places on the piezoelectric material

• Hence, pushing a fixed Q onto the capacitance at the star and end of the cycle can create a Coulomb damper whose value we can control!

# **Single Supply Pre-biasing Circuit Overview**

Simplified and improved circuit to achieve the waveform modification

- Single source pre-bias circuit
- Source supplies pre-charge
- Generated energy returned to same source
- Can be made diode-less (with no free wheeling currents) if V<sub>CC</sub> is optimally set



Let's see how it works...

### **Power Output Formula**

$$P_{\max} = V_{po}^{2} f_{o} C_{p} \left(\frac{8Q}{\pi}\right)$$

- $V_{po}$  is the open circuit voltage of the piezo
- $f_o$  is the mechanical excitation frequency
- Q is the quality factor of the resonant charging path
- $C_p$  is the capacitance of the piezo

Dicken J, Mitcheson PD, Stoianov I, et al, **Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications**, IEEE Transactions on Power Electronics, 2012, Vol:27, Pages: 4514-4529, ISSN:0885-8993

#### **Results - Waveform**



# **Results – Technique Comparison**



### **Conclusions**

- Motion-driven energy harvesters are still performing at a level far below what is theoretically achievable
- Current performance is adequate for some applications such as machine monitoring, and commercial solutions are emerging here
- Significant improvements in performance will be required before harvesting power from human body motion can become viable
- Power conditioning is very important in making a working energy harvester – and a real challenge
- The system is important and being able to analyse the system including the strong link between electric circuit and mechanical systems is important

### Why is it difficult to realise a self powered WSN?

What can we power from low frequency vibrations?



•1g acceleration

•Watch relatively easy to power

•Sensor node is around 2 orders of magnitude harder

•Forget the laptop and cell phone for several years...

We have to optimise the system globally to have a chance of making it functional

#### **Acknowledgements**

Eric Yeatman, Andrew Holmes, Tim Green, Tzern Toh, Kondala Rao, Lauriane Thorner, James Dicken, Peng Miao, Bernard Stark, Anisha Mukherjee, Alwyn Elliott

#### **References**

- P. D. Mitcheson *et al.*, "Architectures for Vibration-Driven Micro-Power Generators", *Journal of Microelectromechanical Systems*, 2004, vol 13, pages 429 – 440
- P. D Mitcheson *et al.*, "MEMS Electrostatic Micro-Power Generator for Low Frequency Operation", Sensors and Actuators A, vol 115, issues 2-3, September 2004, pages 523– 529
- P. D. Mitcheson, D. C. Yates *et al.*, "Modelling for Optimisation of Self-Powered Wireless Sensor Nodes", IEE Body Sensor Networks Workshop '05, pages 53–57, 2005
- PD Mitcheson, EM Yeatman, GK Rao, AS Holmes, TC Green, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE 96 (9), 1457-14

### References

- LM Miller, PD Mitcheson, E Halvorsen, PK Wright, Coulomb-damped resonant generators using piezoelectric transduction, Applied Physics Letters 100 (23), 233901
- T Von Buren, PD Mitcheson, TC Green, EM Yeatman, AS Holmes, et al, Optimization of inertial micropower generators for human walking motion, Sensors Journal, IEEE 6 (1), 28-38
- J Dicken, PD Mitcheson, I Stoianov, EM Yeatman, Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications, Power Electronics, IEEE Transactions on 27 (11), 4514-4529
- PD Mitcheson, T Sterken, C He, M Kiziroglou, EM Yeatman, R Puers, Electrostatic microgenerators, Measurement and Control 41 (4), 114-119
- EM Yeatman, PD Mitcheson, AS Holmes, Micro-engineered devices for motion energy harvesting, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 375-378